Why did it happen?
A chromosome 7q deletion can occur as a result of rearrangements in one parent's own chromosomes or it can happen out of the blue. If an analysis of the parents' chromosomes reveals a structural rearrangement, this is usually balanced so that all the chromosome material is present, and the parent is then almost always healthy. Very occasionally the rearrangement will be the same as in the child, and again the parent may be healthy or they may have similarities with their child.

When the deletion happens out of the blue, the actual cause is not known and it should be regarded as an accident that happened in cell division in the process of making sperm or egg cells. These accidents are not uncommon and affect children from all parts of the world and from all types of background. They also happen naturally in plants and animals. So there is no reason to suggest that your lifestyle or anything that you did caused the loss of chromosome material.

Can it happen again?
Where both parents have normal chromosomes, it is unlikely that another child will be born with a 7q deletion. Where a parent has a rearrangement of their chromosomes, the risk of having another affected child is higher. Where one parent has the same 7q deletion as the child, the risk of passing it on can be as high as 50 per cent.
A chromosome 7q deletion is a rare genetic condition in which there is a missing copy (deletion) of part of the genetic material that makes up one of the body’s 46 chromosomes. The genes that contain coded instructions to the body to develop and work properly are located on chromosomes. Normally there are 46 chromosomes in a cell, occurring as 23 pairs. One of each pair comes from the mother in the egg, the other from the father in the sperm. There are 22 pairs of chromosomes numbered from 1 to 22, roughly from longest to shortest. The 23rd pair are the sex chromosomes. Girls and women have two X chromosomes and boys and men have an X and a Y chromosome. Each chromosome has a short arm (‘p’ for ‘petit’) and a long arm (‘q’).

No two people are affected in exactly the same way by a chromosome disorder. A child may show features so mildly that you would hardly notice them or more obviously. Some people have no obvious features of a chromosome disorder at all and most Unique members were diagnosed not because of medical problems but because of developmental delay.

The likelihood of problems developing depends very much on the genetic material that is missing. These features have been described most often in medical publications and are most likely to make a difference to a child’s health or development.

- Some difficulty with learning. This may be borderline or mild or more severe
- Feeding problems
- Floppiness (hypotonia)
- Underdevelopment of the middle of the face
- Underdevelopment affecting the head and sometimes the brain. The head can be very small (microcephaly)
- Malformations of the base of the spine (sacrum)
- (Boys) Anomalies of the sex organs (genitals)

Effects

- **Growth**
 - Like many other children with chromosome disorders, some babies with 7q deletions are born small for dates and grow slowly, remaining very short as children and as adults. However, this pattern is not universal.

- **Learning**
 - The range of effects on the ability to learn is quite varied. Generally, some support with learning will be needed although difficulties range between mild and severe. Very occasionally a very small deletion within 7q36 has been found in people with no learning difficulties.

- **Speech and communication**
 - Children generally experience some delay in acquiring speech. In general, children seem to show a strong wish to communicate so that in the few cases where speech does not emerge, children use a rich variety of other means to communicate.

- **Behaviour**
 - Children generally appear to be pleasant, sociable people and this puts them at an advantage at school and later in life in their placements. Some families have noted a strong streak of stubbornness that can develop into challenging behaviour.

- **Sitting, moving, walking**
 - Some delay in sitting, crawling and walking is very common indeed but the range of eventual mobility is extremely wide. In general children with larger deletions seem to be more delayed, to have muscular floppiness (hypotonia) and to need supports and walking aids. But at least one child with a large deletion from 7q32 is active and sporty.

Development

- **Growth**
 - Like many other children with chromosome disorders, some babies with 7q deletions are born small for dates and grow slowly, remaining very short as children and as adults. However, this pattern is not universal.

- **Learning**
 - The range of effects on the ability to learn is quite varied. Generally, some support with learning will be needed although difficulties range between mild and severe. Very occasionally a very small deletion within 7q36 has been found in people with no learning difficulties.

- **Speech and communication**
 - Children generally experience some delay in acquiring speech. In general, children seem to show a strong wish to communicate so that in the few cases where speech does not emerge, children use a rich variety of other means to communicate.

- **Behaviour**
 - Children generally appear to be pleasant, sociable people and this puts them at an advantage at school and later in life in their placements. Some families have noted a strong streak of stubbornness that can develop into challenging behaviour.

- **Sitting, moving, walking**
 - Some delay in sitting, crawling and walking is very common indeed but the range of eventual mobility is extremely wide. In general children with larger deletions seem to be more delayed, to have muscular floppiness (hypotonia) and to need supports and walking aids. But at least one child with a large deletion from 7q32 is active and sporty.

Children in whom the lower spinal area (sacrum) is affected by the deletion may have specific difficulties with mobility and balance. Loose and easily dislocatable joints are common. Some children with flexible ankle joints have needed orthotic supports but there is improvement with time and few children have needed surgery.